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Abstract

Because of the strong structural sensitivity of superplasticity, the deformation rule must be affected by stress-state. It is

necessary to prove whether one-dimensional tensile constitutive equation can be directly generalized to deal with the two-dimensional me-
chanical problems or not. In this paper, theoretical results of fill-forming bulge have been derived from both one-dimensional tensile and

two-dimensional bulging constitutive equation with variable 7 value. By comparing theoretical analysis and experimental results made on
typical superplastic alloy Zn-wt22% Al, it is shown that one-dimensional tensile constitutive equation cannot be directly generalized to deal
with two-dimensional mechanical questions. A method to correct deviation between theoretical and experimental results is also proposed.

Keywords: superplastic, fiil-forming bulge, constitutive equation.

Since Holt first used Backofen’s constitutive e-
quation with constant m™ in Ref.[2] to investigate
the bulging process of a sheet forming into 90°-V
grooves and obtained the expression between bulging
pressure and round radius by iteration method, Song
et al. ¥! have used superplastic tensile constitutive e-
quation with variable m to analyze mechanically su-
perplastic fill-forming bulge. By comparing results in
Ref. [2] with those in Ref. [3], it is concluded that
although the theoretical results by applying constitu-
tive equation with variable m are much more precise
than those by applying constitutive equation with
constant m, there still exists much deviation between
the theoretical and the experimental results. One of
the main reasons is that they used one-dimensional
tensile constitutive equation. By applying superplastic
one-dimensional tensile and two-dimensional free
bulging constitutive equation with variable m derived
in Refs. [4] and [5] respectively, we made mechani-
cal analyses on superplastic fill-forming bulge, and
then compared the two results, which showed that
the one-dimensional tensile constitutive equation can-
not be directly generalized to deal with the problems
of superplastic fill-forming bulge.

1 Theoretical basis

The theoretical analysis was based on one-dimen-
sional tensile and two-dimensional free bulging consti-

tutive equations with variable m proposed in Refs.
[4] and [ 5] respectively, which can be obtained by

simulating the experimental curves of m — lge ob-
tained from one-dimensional tensile and two-dimen-
sional bulging tests with negative power function.

If the curve of m — Ige is symmetric, then
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if the curve of m — lge is unsymmetrical, it can be di-
vided into sections, and then constitutive equation
with variable m is

7, 1010

*/mmax.a:/mka.z -1

-1
Jmm,x/%x (IggI - lgkx)} }’

M max, 27, x

Eﬂ,I = emax.I exp{

s tan

lge s, » << 1€ o, 2
b, Iln10

‘/mmax.z/mkb.x -1

O

€b,2 = €max,x exP{

l/mmax,z/mkb,x _

M max, 27b, z

s tan

lgéb,1>lg€.max.x’ (2)
where, m is the strain rate sensitivity index; & the
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integrate constant; o _and e are stress and strain rate
respectively. If substituting subscript =z by | it de-
notes one-dimensional tension, by b it denotes two-
dimensional bulge. For the case of one-dimensional
tension, the parameters are shown in Fig.1 (curve

1). For two-dimensional free bulge, ¢ and ¢ are e-
quivalent stress and equivalent strain rate on the pole

respectively, and the rest are shown in Fig.1 (curve
2).

Strain rate sensitivity index m
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Fig. 1. The curve of m — lge .

If the curve of m — lge is symmetric, there is
MA, = MB, = my, = (mmax,x +2m01,x)/3
= (mmax,1+2m02,x)/3’

Nz = 1ge‘max,x - lgéA,z = lgéB,z - lgémax,x'

If the curve of m — lge is unsymmetrical, there

mA, 2 # MR, x> Na, x ;ﬁ b, x»
Mga,x — Mp 2 = (mmax,z +2m01,1’)/3!
Myh,x = MpB,x = (mmax,x + 2m02,1)/3’

Na,xz = lgémx,z - lgéA,x’

i

Mo, = lgéB.x - lgémax,x'
2 Solving the limiting radius of superplastic
fill-forming bulge

According to Holt’s method, Song et al. consid-
ered the stage of filling grooves as a plane strain pro-
cess and assumed that the material obeyed the con-
stant-volume law and the incremental theory of Hill!®!
for an anistropic metal sheet. By a mechanical analy-
sis, the expressions of filling-forming bulge are shown
as follows;
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where the signification of parameters in Egs. (3) and
(4) is shown in Fig.2, in which = = p/p, is the non-
dimensional radius; py and s¢ are the radius and
thickness when the sample is touching grooves; pis
the instantaneous radius in filling grooves; ¢ = ooP/
5o the equivalent pressure;
a = (2cot(y/2) ~(x - 7))/ (x - 7),

7 the angle of groove; R the anisotropic coefficient in
the thickness direction.

Fig. 2. The diagram of superplastic fill-forming bulge.

2.1 Solving the minimal radius of fill-forming bulge
by uniaxial tensile constitutive equation with variable
m

Substituting Egs. (3) and (4) into the uniaxial
tensile constitutive equation with variable m (Eq.
(1)) , one gets
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Simplifying the above equation, one gets
dz _  €mwyz) Y1 +2R 7In10
de ~ (1+R)a /mmax,l/mk,l—l
-tan( v mmuJ/mk,l -1

™M max, 171

Rl o

(1+ R)p %
Substituting Eq. (5) into Eq. (4), the necessary
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strain rate €| corresponding to non-dimensional radius
x| can be obtained:
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It is generally accepted that when the strain rate ep is

several orders smaller than the optimum strain rate

€] = Emax,I€XP

* tan

.lg

€max> the material loses its superplasticity and defor-
mation stops. Therefore, the criterion to establish
minimal filling radius under constant pressure is

E'I"Imml»éB' (7)
Substituting Eq. (7) into Eq. (6), we have the rela-
tionship between the limiting radius and the equiva-
lent pressure as
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2.2 Solving the minimal radius of fill-forming bulge
by bulging constitutive equation with variable m

Similar to the above methods used in Section
2.1, the criterion to analyze minimal fill-forming ra-
dius by the two-dimensional bulging constitutive e-
quation with variable m is still Eq. (7). Substituting
Egs. (3) and (7) into the superplastic bulging consti-
tutive equation with variable m (Eq. (1)), we have
the relationship between the limiting radius and the e-
quivalent pressure as

Zoim = Dbgs (10)
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™M max,b = 0875,

Na,b = 0.26, ékh,b =1.7X% 10—2 S_l,

€max b = 1.27 X 1072571,

3 Comparison of theoretical and experimen-
tal results

3.1 Experiment

3.1.1 Tension All specimens were cut from Zn-
wt22 % Al superplastic alloy sheet with an original
thickness (s9) of 2 mm and its dimension within
gauge length was 10 mm X 5 mm. The experimental
temperature was 270 C and was maintained constant
for 8 min. The anistropic parameter R in the thick-
ness direction is 0. 58. The experimental curve of

m —lge corresponding to uniaxial tensile state is
shown in Fig.3, and the constitutive parameters of u-
niaxial tensile state corresponding to Eq. (1) are ob-
tained;

{mmﬂx,l = 0.56, émax.l =4x107s7", my, = 0.45,
cu1=2x102s, k = 14.11 MPa, o= 0.7,
(12)
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Fig. 3. The experimental curves of m — lge. by tensile and
bulging test.

3.1.2 Free bulge The material and temperature
are the same as above. The temperature of the speci-
men was maintained constant for 20 min. The radius
of the specimen was 70 mm and the radius of pressing
rim rg was 50 mm. Bulging the samples with the
photoelectric measuring device described in Ref. [7],

the experimental curve of m — lge obtained by jump
pressure method'®! is shown in Fig.3, and when Eq.
(1) is in two-dimensional free bulge state the corre-
sponding constitutive parameters are

Mib,b = 0656,
M,b = 013,

éka,b =0.7x1072 S_l,

ky, = 16.51 MPa.

(13)
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3.1.3 Fill-forming bulge The specimens and ;?‘1',712676 = 5.95253 x 107! ¢,
experimental conditions were the same as those in the (15)

case of free bulge except for putting the fill-forming
die of quartz glass into the clamping die. Photographs
were taken for the forming sample at the focus of the
lens, and measuring the limiting radius py, by ampli-
fying it tenfold. Three samples were measured under
each pressure condition and the average values are
shown in Fig. 4. Because the sheet would be bulged
freely before it touched the cone wall, the fill-forming
die could be devised at a free bulging height H, of 4

mm. Substituting ro and Hy into py = (rg + Hg)/

2HY!, we will get the free bulging radius pg at
314.5 mm.
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Fig. 4. The theoretical curves of lgz i~ ¢ and its experimental

data. 1, Experimental data; 2, by two-dimensional bulging consti-
tutive equation with variable m ; 3, by one-dimensional tensile con-
stitutive equation with variable m .

3.2 Theory

The experimental curve of m — lge in bulging
stress state is unsymmetrical, so the material will ex-
ert its superplastic potential only if the strain rate in
fill-forming bulge follows the rule shown as the left
curve in Fig.3. Substituting
Yy =90°, po=2314.5mm, lg(cp/emy) =-3.7
together with Eqgs. (12), (13) into Egs. (9), (11)
respectively, one would get the material bulging lim-
iting constants under constant pressure corresponding
to one-dimensional tensile and two-dimensional free
bulging constitutive equation with variable m

D, = 5.95253 x 1071,

Dy, = 2.25431 x 107".
Substituting Eq. (14) into Egs. (8) and (10), we
get the quantitative limiting equations between non-

(14)

dimensional radius and equivalent pressure under con-
stant pressure as

2 27576 _ 9 25431 x 107! g

min, b
The theoretical curves of limiting radius based on Eq.
(15) are shown in Fig. 4.

3.3 Comparison of theoretical and experimental re-
sults

It is shown in Fig. 4 that although the theoretical
curve and its change trend of fill-forming bulge by
one-dimensional tensile constitutive equation with
variable m is close to that by two-dimensional bulging
constitutive equation, there still exists much discrep-
ancy in quantity. The experimental data shown in
Fig.4 are in fair agreement with the theoretical curve
by the two-dimensional bulging constitutive equation
with variable m in most cases, but there still exists
deviation, which might arise partly from the use of
complete sticking friction between the material and
the die wall, partly from both assumptions of uniform
thickness and plane-strain. In fact, there exists glid-
ing friction between the die and the specimen; and
the part without touching the die is in non-uniform
thickness and in plane-stress state. Therefore, it is
necessary to correct the theoretical results.

Eq. (10) can be changed into
I(:n_i.r:,b = A
A = Dyqy )
Eq. (16) can be divided into two parts shown in Fig.
5. The left part is a family of A ~ z 5,1 curve corre-
sponding to different ¥, which is only relevant to the
angle of groove ¥, not relevant to the character of
material and its original dimensions. The right part
A~ qy is a universal curve independent of ¥, and its
slope Dy is only relevant to constitutive parameters in
constitutive equation. Once the constitutive equation

(16)

is determined, A ~ qy,is accordingly determined. The
discrepancy between theoretical curve and experimen-
tal data is only represented in the part of A —~
lgx min, 1>, and the discrepancy value is getting smaller
with the smaller xy, ,- So, it is supposed that f(x)
is a correcting function by which the theoretical curve
can be corrected to equal the experimental one. Simu-
lating the experimental data in Fig.5 by a computer,
the fitting curve is

A = 0.4131352%°90%% (17)

min, b
According to the second expression in Eqs. (15) and
(17), there is

Fl2)z %7276 = 041313522290 (18)

min, b min, b
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Fig. 5. The theoretical curve of limiting radius of fill-forming

bulge by bulging constitutive equation with variable m and its ex-
perimental data at 7 =90°.

Simplifying Eq. (18) yields
f(z) = 0.413135°2.33% (19)

min, b
When the angle of groove is ¥ =90°, Eq. (19) fits
for any materials and any original dimensions.

4 Conclusions

(i) The mechanical problems of superplastic fill-
forming bulge cannot be dealt with one-dimensional
tensile constitutive equation with variable m, but su-
perplastic free bulging constitutive equation with vari-
able m that based on a two-dimensional bulging stress
state can truly reflect deformation rules of fill-forming
bulge.

(ii) From the analyzing process of correcting
function f(x), it can be concluded that when the an-
gle of groove ¥ is determined, f(x) is not relevant to
material’s character but only relevant to its deforma-
tion process, so it adapts to any materials and any o-
riginal dimensions.

(iii) There exists a deviation between theoretical
and experimental results when applying two-dimen-
sional bulging constitutive equation. The primary rea-
son is that we suppose the specimen is in uniform de-
formation and it ceases to deform once it touches the
die. This issue will be discussed specially in another

paper.
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